Monitoring Soil Salinization in Keriya River Basin, Northwestern China Using Passive Reflective and Active Microwave Remote Sensing Data

نویسندگان

  • Ilyas Nurmemet
  • Abduwasit Ghulam
  • Tashpolat Tiyip
  • Racha Elkadiri
  • Jian-Li Ding
  • Matthew Maimaitiyiming
  • Abdulla Abliz
  • Mamat Sawut
  • Fei Zhang
  • Abdugheni Abliz
  • Qian Sun
چکیده

Soil salinization is one of the most widespread soil degradation processes on Earth, especially in arid and semi-arid areas. The salinized soil in arid to semi-arid Xinjiang Uyghur Autonomous Region in China accounts for 31% of the area of cultivated land, and thus it is pivotal for the sustainable agricultural development of the area to identify reliable and cost-effective methodologies to monitor the spatial and temporal variations in soil salinity. This objective was accomplished over the study area (Keriya River Basin, northwestern China) by adopting technologies that heavily rely on, and integrate information contained in, a readily available suite of remote sensing datasets. The following procedures were conducted: (1) a selective principle component analysis (S-PCA) fusion image was generated using Phased Array Type L-band SAR (PALSAR) backscattering coefficient (σ°) OPEN ACCESS Remote Sens. 2015, 7 8804 and Landsat Enhanced Thematic Mapper Plus (ETM+) multispectral image of Keriya River Basin; and (2) a support vector machines (SVM) classification method was employed to classify land cover types with a focus on mapping salinized soils; (3) a cross-validation method was adopted to identify the optimum classification parameters, and obtain an optimal SVM classification model; (4) Radarsat-2 (C band) and PALSAR polarimetric images were used to analyze polarimetric backscattering behaviors in relation to the variation in soil salinization; (5) a decision tree (DT) scheme for multi-source optical and polarimetric SAR data integration was proposed to improve the estimation and monitoring accuracies of soil salinization; and (6) detailed field observations and ground truthing were used for validation of the adopted methodology, and quantity and allocation disagreement measures were applied to assess classification outcome. Results showed that the fusion of passive reflective and active microwave remote sensing data provided an effective tool in detecting soil salinization. Overall accuracy of the adopted SVM classifier with optimal parameters for fused image of ETM+ and PALSAR data was 91.25% with a Kappa coefficient of 0.89, which was further improved by the DT data integration and classification method yielding an accuracy of 93.01% with a Kappa coefficient of 0.92 and lower disagreement of quantity and allocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Scale Validation of SMAP Soil Moisture Products over Cold and Arid Regions in Northwestern China Using Distributed Ground Observation Data

The Soil Moisture Active Passive (SMAP) mission was designed to provide global mapping of soil moisture (SM) on nested 3, 9, and 36 km earth grids measured by L-band passive and active microwave sensors. The validation of SMAP SM products is crucial for the application of the products and improvement of the retrieval algorithm. Since the SMAP SM products were released, much effort has been inve...

متن کامل

Downscaling of Soil Moisture Retrieved from Multi-sensor Remote Sensing Data over the Zhanghe Irrigation Area, China

EXTENDED ABSTRACT Soil moisture plays a vital role in the atmosphere-land interactions, hydrological simulation, weather numerical prediction and agricultural arid monitoring. It may control the partition of water and energy into sensible heat flux, latent heat flux, evapotranspiration, runoff and baseflow between land and atmosphere respectively. In order to obtain the profile of soil moisture...

متن کامل

Soil Moisture Mapping in Vegetated Area Using Landsat and Envisat ASAR Data

Physical model is always complicated to estimate soil moisture content, while machine learning algorithms have potential advantages in retrieving information from remote sensing data. This paper takes the middle stream of Heihe River Basin in China as the study area. The neural network, one of the most common machine learning algorithms, is used to retrieve soil moisture from active microwave d...

متن کامل

Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave and Optical Remote Sensing Observations

As a typical inland river basin, Heihe River basin has been experiencing severe water resource competition between different land cover types, especially in the middle stream and downstream areas. Terrestrial actual evapotranspiration (ETa), including evaporation from soil and water surfaces, evaporation of rainfall interception, transpiration of vegetation canopy and sublimation of snow and gl...

متن کامل

Microwave Remote Sensing in Soil Quality Assessment

Information of spatial and temporal variations of soil quality (soil properties) is required for various purposes of sustainable agriculture development and management. Traditionally, soil quality characterization is done by in situ point soil sampling and subsequent laboratory analysis. Such methodology has limitation for assessing the spatial variability of soil quality. Various researchers i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015